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We propose that a quantum operator, apart from representing quantum dynamics, may also represent a
dynamical~steady-state! situation of a classical system. We consider a Hamiltonian that describes hopping of
single ~spinless, noninteracting! bosons to nearest-neighbor sites in a hypercubic lattice and find exactly the
mass distribution~in arbitrary dimension! for the ground state and the first excited state. The density shows a
peak at a mass equal to the density. A variant of this Hamiltonian is shown to have an exponential mass
distribution ~in the ground state! that is identical with an analogous classical model.

PACS number~s!: 68.10.Jy, 68.45.Da, 82.20.Mj, 82.20.Wt
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Investigation of the steady state for kinetic models h
always been a matter of interest. Such models have b
shown to represent in some way the processes of aggreg
and desorption@1–5#, thin film deposition@6#, catalytic reac-
tions @7#, evolution in a tank reactor@8#, kinetics of polymer-
ization @9#, etc. However, all these models refer to a classi
system and basically consists of choosing an updating
that converts the configuration of a system from one to
other. One starts with a trial configuration and operates
rule repeatedly until the system reaches a ‘‘steady state
the sense that an average of some physical property
several successive configurations becomes constant. In
Brief Report we propose that aquantumoperator, apart from
representing quantum dynamics, may also represent a
namical ~steady-state! situation of a classical system. For
quantum system, letuc& be some state that is a superpositi
of many configurations. The measured value of a phys
quantity in this state will represent a weighted average o
the constituent configurations. If we operate repeatedly
uc&, some operatorH that incorporates some physical pr
cess of interest, then this average will go on changing u
the eigenstate is reached. The eigenstate will be invar
under the physical process described by the operator.
study of the eigenstates of quantum Hamiltonians will the
fore enrich our knowledge about classical kinetic situatio

To illustrate this point further, let us consider the Ham
tonian

H5(
r ,n

cr
†cr1n ~1!

that describes hopping of single~spinless, noninteracting!
bosons to nearest-neighbor sites in somed-dimensional hy-
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percubic lattice$r%. ~Here,cr ,cr
† are the destruction and cre

ation operators for bosons andn runs over the nearest
neighbor positions.! An eigenstate of this Hamiltonian will
in general, be a superposition of many configurations a
will in some sense be invariant under boson hopping.

For the classical models, the quantity studied has of
been the mass distribution function. Usually the power l
or exponential decay is observed@1–5,8,9#, but recently a
peak at a high mass~after the tail of algebraic decay! has also
been found@5#. Below, we shall determine exactly~in arbi-
trary dimension! the ground-state mass distribution for th
HamiltonianH mentioned above. The number of bosons a
site r is called as the mass atr and the mass distribution
function P(m), (m50,1,2, . . . ) isdefined as the probability

FIG. 1. Mass distribution@Eq. ~6!# for the ground state of the
HamiltonianH. The numbers in the figure indicate the density. A
curves are forN51000, but the curves are highly insensitive to t
value ofN.
2945 ©2000 The American Physical Society
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of getting exactlym particles at any site in the lattice$r%. It
is found that the functionP(m) has the interesting propert
that for density~say,r) lower than 1,P(m) decreases mono
tonically with m, while for r.1, P(m) shows a peak~Fig.
1!. In this sense, there is some sort of a transition atr51.
Although such peaks are uncommon for the classical mo
studied so far, one must note that it has been observed
perimentally long ago@10# in Au clusters on NaCl and Ag
clusters on C.

One crucial question is the following: to what classic
situation does the ground state ofH correspond? One imme
diately suggestive updating rule~for classical systems! is the
following.

C: Choose a sitei randomly, remove one particle from th
site, among the nearest neighbors ofi choose one neighbo
randomly and add one particle to this neighbor.

It will be seen below that this rule gives a mass distrib
tion that is simply exponential and hence does not agree
that for the ground state ofH. This disagreement is presum
ably due to the presence of the mass amplitudes in the
nition of boson operators:

cum&5Amum21&, c†um&5Am11um11&.

We shall therefore also analyze a somewhat different Ha
tonian for hopping bosons, viz.,

H 852(
r ,n

@ar
†ar1n1dm(r ),0#. ~2!

Here, ar ,ar
† are the destruction and creation operators

bosons with amplitude 1,

aum&5um21&, a†um&5um11&, au0&50,

m(r )5cr
†cr and other notations are the same as above.H 8 is

also a quantum operator, sincea,a† do not commute:

@ar ,ar
†#5dm(r ),0 .

For H 8, the ground state mass distribution is found to
exponentially decaying and precisely identical to that forC.
Thus, although the classical analogue ofH could not be de-
termined, the same forH 8 is found to be nothing butC.

We shall now determine the mass distribution forH. We
first note that the total number of bosonsM and hence the
densityr5M /N, N being the total number of sites, is con
served. It is easy to observe that by Fourier transformatio
the boson operators

cq5
1

AN
(

r
cr exp~ iq•r !

under periodic boundary condition, one can immediately
agonalize this Hamiltonian to

H5(
q,n

cq
†cq cos~q•n!.

Here $q% is the reciprocal lattice of$r% with the convention
that 0,q•n<2p. The ground state is one for which all th
M particles are atq5p for one-dimensional lattice, atq
ls
x-
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5(p,p) for square lattice, and atq5(p,p,p) for cubic
lattice. We now note that due to translational symmetry,
quantity P(m) is the same as the probabilityPr(m) of get-
ting m particles at some specific siter . To obtainPr(m) in
some stateuc& we resolve the state into the component bos
distributions in the original space$r%:

uc&5(
k

A~k!uk&

and then observe that

Pr~m!5(
k

uA~k!u2dm(r ,k),m , ~3!

wherem(r ,k) is the mass at the siter in the distributionuk&.
We shall now calculate the quantity

bm5^cu~cr
†!m~cr !

muc&. ~4!

As we operate (cr)
m on uk&, two situations may arise; the

states for whichm(r ,k),m will be annihilated and the state
with m(r ,k)>m will be converted to one with amplitude

$m~r ,k!~m~r ,k!21!~m~r ,k!22!•••„m~r ,k!2m11…%1/2

having„m(r ,k)2m… particles at the siter . This gives

bm5 (
j 5m

M

(
k

uA~k!u2
j !

~ j 2m!!
dm(r ,k), j

and substituting Eq.~3! here we have

bm5 (
j 5m

M
j !

~ j 2m!!
P~ j !.

This equation is quite general and can be easily inverted
calculating the generating function. Thus, we multiply bo
sides by (x21)m/m!, sum overm from 0 toM, and compare
the coefficient ofxj from both sides to obtain

P~ j !5 (
m5 j

M
~21!m2 j

m!
~ j

m!bm , ~5!

where (j
m) is the binomial coefficient. If one can findbm by

applying Eq.~4! on a given stateuc&, then Eq.~5! gives
immediately the mass distribution functionP( j ). Let us first
apply this procedure to the state where all the particles ar
someq5q0. The ground state ofH is one such state. Writing
(cr

†)m(cr)
m as

1

Nm (
qi ,qi850

2p

cq
18

†
cq

28
†
•••cq

m8
†

cq1
cq2

•••cqm

3exp@ i r•~q181q281•••1qm8 2q12q2•••2qm!#

we note that q1 ,q2 , . . . ,qm all must be equal toq0,
since only this state is occupied. Moreover, each
q18 ,q28 ,•••,qm8 must also beq0, since otherwise we do not ge
back the original stateuc&. This gives



l

-

ta

fo

er

in
ses

s in
he

n
that

for

ere-

ly
e

tate

-

u-

site

PRE 62 2947BRIEF REPORTS
bm5
1

Nm

M !

~M2m!!

and substituting this expression in Eq.~5! one gets the fina
expression for the ground-state mass distribution ofH:

P~m!5
~N21!M2m

NM
~m

M !. ~6!

One immediately obtains the equality

P~m!

P~m21!
5

M112m

mN2m
,

which implies that P(m) increases withm for m,(M
11)/N;r, reaches a peak atm5r, and then decreases, giv
ing an asymmetric Gaussian-type curve~Fig. 1!. Also, there
will be no peak for (M11),N, or r,1.

In the first excited state, one particle~in $q% space! will be
removed from the ground state and put to some other s
q8, say. To calculatebm now, we note thatq8 may be equal
to any or none ofq1 ,q2 , . . . ,qm as well asq18 ,q28 , . . . ,qm8 .
This gives

bm5
1

Nm

M !

~M2m!! S 12
m

M
1

m2

M D .

Straightforward calculation then gives

P~m!5
~N21!M2m

NM
~m

M !
1

M ~M21!

3F 1

~N21!2
~M2m!~M2m21!~N222N1M !

1
2

N21
m~M2m!~N2M !1Mm~m21!G

for 0<m,M22 and P(M21)5@M (M22)(N21)22M
12N#/NM,P(M )5M /NM.

Another state that can be tackled in closed form is one
which one particle is in each ofM states~in $q% space! ~as-
suming thatr,1). Noting that them particles to be de-
stroyed by thec operators can be chosen in (m

M) ways, and
that them particles chosen may be distributed inm! ways
amongq1 ,q2 , . . . ,qm as well asq18 ,q28 , . . . ,qm8 , we get

bm5
~m! !2

Nm
~m

M !

and

P~m!5 (
j 5m

M
~21! j 2m

Nj
~ j

M !~m
j ! j !.

This sum cannot be evaluated easily. Instead, one can d
from this equation the equality
te,

r

ive

P~m!5P~m11!1
N

M11
PM11~m11!,

wherePM11(m11) is the functionP(m11) when the total
mass is (M11). However, since for largeM we may assume
PM11(m11);P(m11), we obtain herefrom anexponen-
tial distribution:

P~m!5
1

r11 S r

r11D m

. ~7!

A few comments are in order.~i! The distribution of particles
in the $q% space indeed determines the mass distribution
$r% space, but not so sensitively. Thus, when mas
m1 ,m2 , . . . are at statesq1 ,q2 , . . . , respectively, the num-
bersm1 ,m2 , . . . alone determine the distributionP(m) in
the space$r%, and the specific values ofq1 ,q2 , . . . do not
matter. For example, all the states that have all particle
one state will not have the same energy, but will have t
sameP(m) as the ground state.~ii ! At least for this Hamil-
tonian, it is difficult to find whether the mass distributio
reflects a phase transition or not. Thus, it is easy to see
the HamiltonianH undergoes a Bose condensation~although
only in three-dimensions!, but it is difficult to calculate the
mass distribution across the transition temperature, or
that matter, at any nonzero temperature.~iii ! One can easily
calculate the quantity

~cr
†cr !

25
1

N2 (
qi50

2p

cq1

† cq2
cq3

† cq4
exp@ i r•~q12q21q32q4!#

in any of the states considered above, and calculate th
from the ‘‘roughness parameter’’

^~cr
†cr !

2&2^cr
†cr&

2.

This quantity remains finite always. For example, it is simp
r and r21r, respectively for the ground state and for th
state that has one particle in each ofM states.

We now analyze the HamiltonianH 8 for hopping bosons
defined by Eq.~2!. Let us defineu0& as the state that is a
superposition of all possible distributions ofM bosons
amongN sites. This state can be shown to be the ground s
of H 8 by proving that~i! this state is an eigenstate of2H 8
with eigenvalue 2dN and ~ii ! the numerically largest eigen
value of2H 8 is 2dN. To prove~i!, we observe that ifuk& is
a configuration with no vacant site, thenar

†ar1nuk& will con-
sist of 2dN distinct configurations and as all these config
rations are included inu0&, the statear

†ar1nu0& will contain
uk& with amplitude 2dN. This amplitude would be 2dN
22d if there had been one vacant site inuk&, since now 2d
jumps from the nearest neighbor sites of the vacant
would be absent. Hence, in general, the amplitude ofuk& in
2H 8u0& will be 2dN, and this completes the proof of~i!. To
prove~ii !, let us examine the matrix representation of2H 8
in the space of all configurationsuk&. Each row~or column!
will have 1 in 2dN places and 0 elsewhere, sinceuk& is
connected to 2dN configurations by the Hamiltonian~when
there is no vacant site!. It folllows that the sum of the ele-
ments of every row~or column! is 2dN which, in view of the
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well-known matrix properties@11#, is equal to the spectra
radius. This completes the proof of~ii !.

To calculate now the mass distribution in the ground sta
we note that the total number of configurations inu0&, i.e.,
the number of ways in whichM bosons can be distribute
amongN sites~allowing for empty sites! is

VN
M5S M1N21

N21 D .

This expression is obtained by observing thatVN
M is nothing

but the coefficient ofxM in the expression (11x1x2

1•••)N. As mentioned earlier,P(m) is also the probability
Pr(m) of gettingm bosons at some particular siter . Hence,
P(m) is simply 1/VN

M times the number of configuration
that havem bosons at siter . This number of configurations i
again just the number of ways in which the remainingM
2m particles can be distributed among the remainingN
21 sites. Therefore, the ground state mass distribution
H 8 is, finally,

P~m!5VN21
M2m/VN

M

5~N21!
~M1N2m22!! M !

~M1N21!! ~M2m!!
, ~8!
ev

.

e,

r

which, for largeM, N, and smallm, happens to take the
exponential form~7!.

Before we conclude, let us compare the mass distributi
for the ground states ofH and H 8 with the same for the
steady state of the classical ruleC. The ruleC is a special
case of the model of Majumdar, Krishnamurthy, and Bar
@5#, with no diffusion and aggregation and only ‘‘chipping
present. The mean field equation for this model,

dP~m!

dt
5@P~0!22#P~m!1P~m11!

1@12P~0!#P~m21!,

has the same steady-state solution as Eq.~7!. We have also
checked that the simulation results forC with 1000 particles
also agree with Eq.~7! for reasonable values of density~;1
to 10!. Thus, the classical distribution resembles the grou
state distribution ofH 8 @Eq. ~8!# but not the same ofH @Eq.
~6!#, as mentioned above. It would be interesting to comp
other quantum models with analogous classical models.

Note Added. Mass distribution described by Eq.~7! has
been discussed recently in the context of classical model
Majumdar, Krishnamurthy, and Barma@12#.

The author is grateful to AICTE for assistance.
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