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We propose that a quantum operator, apart from representing quantum dynamics, may also represent a
dynamical(steady-statesituation of a classical system. We consider a Hamiltonian that describes hopping of
single (spinless, noninteractindosons to nearest-neighbor sites in a hypercubic lattice and find exactly the
mass distributior{in arbitrary dimensionfor the ground state and the first excited state. The density shows a
peak at a mass equal to the density. A variant of this Hamiltonian is shown to have an exponential mass
distribution (in the ground stafethat is identical with an analogous classical model.

PACS numbefs): 68.10.Jy, 68.45.Da, 82.20.Mj, 82.20.Wt

Investigation of the steady state for kinetic models hadpercubic lattice[r}. (Here,c, ,c are the destruction and cre-
always been a matter of interest. Such models have beeftion operators for bosons amu runs over the nearest-
shown to represent in some way the processes of aggregatigighbor positions.An eigenstate of this Hamiltonian will,
and desorptiofl-5], thin film deposition{6], catalytic reac- in general, be a superposition of many configurations and
tions[7], evolution in a tank reactd®], kinetics of polymer-  wiill in some sense be invariant under boson hopping.
ization[9], etc. However, all these models refer to a classical For the classical models, the quantity studied has often
system and basically consists of choosing an updating rulgeen the mass distribution function. Usually the power law
that converts the configuration of a system from one to anpr exponential decay is observéti-5,8,9, but recently a
other. One starts with a trial configuration and operates th@eak at a high magsfter the tail of algebraic decaias also
rule repeatedly until the system reaches a “steady state” ileen found5]. Below, we shall determine exact(jn arbi-
the sense that an average of some physical property ovefary dimensioh the ground-state mass distribution for the
several successive configurations becomes constant. In thigamiltonian’t mentioned above. The number of bosons at a
Brief Report we propose thatquantumoperator, apart from  sjte r is called as the mass atand the mass distribution

representing quantum dynamics, may also represent a dygnctionP(m), (m=0,1,2 .. .) isdefined as the probability
namical (steady-stafesituation of a classical system. For a

quantum system, let/) be some state that is a superposition 1 - ; ; | | | | | .
of many configurations. The measured value of a physical i ]
guantity in this state will represent a weighted average over 0.1 ‘—\
the constituent configurations. If we operate repeatedly on 0.01 3
| ), some operatof{ that incorporates some physical pro- [ ]
cess of interest, then this average will go on changing until 0.001 3
the eigenstate is reached. The eigenstate will be invarian 0.0001 3
under the physical process described by the operator. The P(m) ]
study of the eigenstates of quantum Hamiltonians will there- 107> ¢ E
fore enrich our knowledge about classical kinetic situations. 10-6 E _j
To illustrate this point further, let us consider the Hamil- [ ]
tonian 1077 H E
T 1078 E
H % C/Crin (1) 10-°
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that describes hopping of singlspinless, noninteracting m/p

bosons to nearest-neighbor sites in satrdimensional hy- FIG. 1. Mass distributioiEq. (6)] for the ground state of the
HamiltonianH. The numbers in the figure indicate the density. All
curves are foN= 1000, but the curves are highly insensitive to the
*Electronic address: subinay@cucc.ernet.in value ofN.
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of getting exactlym particles at any site in the lattide}. It =(r, ) for square lattice, and aj=(,,7) for cubic
is found that the functio?(m) has the interesting property |attice. We now note that due to translational symmetry, the
that for density(say,p) lower than 1,P(m) decreases mono- quantity P(m) is the same as the probabili;(m) of get-
tonically with m, while for p>1, P(m) shows a peakFig.  ting m particles at some specific site To obtainP,(m) in
1). In this sense, there is some sort of a transitiopatl.  some statéys) we resolve the state into the component boson
Although such peaks are uncommon for the classical modelgistributions in the original spadg}:
studied so far, one must note that it has been observed ex-

erimentally long agg10] in Au clusters on NaCl and A
glusters onyC. 9% k |¢>=; A(K)[k)

One crucial question is the following: to what classical

situation does the ground state7@fcorrespond? One imme- and then observe that
diately suggestive updating ru(®r classical systemss the
following.

— 2
C: Choose a siterandomly, remove one particle from this Pr(m)= ; |AGK)]“Bmr k), m>» ©)
site, among the nearest neighborsi @hoose one neighbor
randomly and add one particle to this neighbor. wherem(r,k) is the mass at the sitein the distribution|k).

It will be seen below that this rule gives a mass distribu-\ve shall now calculate the quantity
tion that is simply exponential and hence does not agree with
that for the ground state d%. This disagreement is presum- bm={l(cH™(c)™ ). (4)
ably due to the presence of the mass amplitudes in the defi-
nition of boson operators: As we operate ¢,)™ on |k), two situations may arise; the
states for whichm(r,k) <m will be annihilated and the states
clmy=mlm-1), cf[m)=ym+1|m+1). with m(r,k)=m will be converted to one with amplitude

We shall therefore also analyze a somewhat different Hamil- fm(r k)(m(r, k) —1)(m(r,k)—2)- - - (m(r,k) — m+ 1)} 12
tonian for hopping bosons, viz.,
having (m(r,k) —m) particles at the site. This gives
HI:_E [arTar+n+5m(r),O]- 2 M il
bm:,Z Ek |A(k)|2(j_—m)|5m(r,k),j
Here,a,,a,T are the destruction and creation operators for J=m ’

bosons with amplitude 1, and substituting Eq(3) here we have

ajmy=|m-1), a'l/m)=|m+1), al0)=0,

M
b=,

j
j m(j_

This equation is quite general and can be easily inverted by
[a,,a]1= S 0- calculating the generating function. Thus, we multiply both

S sides by &—1)™/m!, sum overm from O toM, and compare
exponentially decaying and precisely identical to thatdor
Thus, although the classical analoguerbicould not be de- M (—1)m-]
termined, the same fak ' is found to be nothing but. P(j)=2> T(Jm)bm. 5
We shall now determine the mass distribution fér We m=) '
first note that the total number of bosokksand hence the . . . . '
densityp=M/N, N being the total number of sites, is con- wherg qn) Is the b'”om'?' coefficient. If one can flrtm|1] by
. ; ~applying Eq.(4) on a given statgy), then Eq.(5) gives
served. It is easy to observe that by Fourier transformation tQ : o R !
immediately the mass distribution functi®(j). Let us first
the boson operators . .
apply this procedure to the state where all the particles are at
someq=(y. The ground state dft is one such state. Writing

TPa).

|
m(r)= c;rcr and other notations are the same as abdi/eis m)

also a quantum operator, sinaea’ do not commute:

1 tfym m
Cq=—— 2, Crexpliq-r) (ch™(c)™ as
NS T
2
under periodic boundary condition, one can immediately di- —_ > chel et e e -..c
) . . ! N™ YAy a ay, 9179 Am
agonalize this Hamiltonian to gi.a/ =0

H=, cacq cogq-n). Xexdir-(gq;+0a+ -+ 0= 01~ 02" - —0m)]
q,n

we note thatqg;,Q,, ...,y all must be equal toqg,
Here{q} is the reciprocal lattice ofr} with the convention since only this state is occupied. Moreover, each of
that 0<q-n=2. The ground state is one for which all the q;,95, - -,q;, must also bejy, since otherwise we do not get

M particles are ag= = for one-dimensional lattice, af back the original statey). This gives
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1 M!

N
mm P(m)=P(m+1)+mPM+l(m+1),

b=

wherePy, , 1(m+1) is the functionP(m+ 1) when the total
mass is M +1). However, since for larg®l we may assume
Pm+1(m+1)~P(m+1), we obtain herefrom amxponen-
(N—1)M-m tial distribution:
P(m):N—M(M)- (6)

and substituting this expression in E§) one gets the final
expression for the ground-state mass distributioftof

m

p

p+1

P(m)= @

One immediately obtains the equality

A few comments are in ordefi) The distribution of particles

P(m _M+1-m in the {q} space indeed determines the mass distribution in

P(m—-1) mN—m '’ {r} space, but not so sensitively. Thus, when masses
m,,m,, ... are at stateg;,q,, ..., respectively, the num-
which implies that P(m) increases withm for m<(M bersm;,m,, ... alonedetermine the distributio®(m) in
+1)/N~p, reaches a peak at=p, and then decreases, giv- the spacgr}, and the specific values @f;,q,, ... do not
ing an asymmetric Gaussian-type cui¥ég. 1). Also, there  matter. For example, all the states that have all particles in
will be no peak for M+ 1)<N, or p<1. one state will not have the same energy, but will have the

In the first excited state, one parti¢ie {q} spacg¢willbe  sameP(m) as the ground statéii) At least for this Hamil-
removed from the ground state and put to some other stateonian, it is difficult to find whether the mass distribution
q’, say. To calculaté,, now, we note that|” may be equal reflects a phase transition or not. Thus, it is easy to see that
to any or none ofy;,0,, . .., 0n as well asq;,9;, - .. .0,-  the Hamiltoniar?{ undergoes a Bose condensatiatthough
This gives only in three-dimensionsbut it is difficult to calculate the

mass distribution across the transition temperature, or for

1 M! m m? that matter, at any nonzero temperatuie) One can easily
m—m (M——m)l 1- M + ™ calculate the quantity
2
Straightforward calculation then gives (C:Cr)zz—z 2 CcTthgngC% exdir-(q,—go+0z—0s)]
(N-pM=m 1
P(m)= NI (m)M(M_l) in any of the states considered above, and calculate there-
from the “roughness parameter”
x (M—m)(M—m—1)(N?~2N+M) ((cfen?)—(cfen)?.
(N—1)
This quantity remains finite always. For example, it is simply
2 .
M — N=M)+M 1 p and p“+p, respecnvv_aly f_or the ground state and for the
N 1 N m)( ) m(m-1) state that has one particle in eachMfstates.

We now analyze the Hamiltoniak ' for hopping bosons
for 0Osm<M -2 andP(M—1)=[M(M—-2)(N-1)—2M defined by Eq.(2). Let us defingl0) as the state that is a
+2N]/NM P(M)=M/NM, superposition of all possible distributions &fl bosons
Another state that can be tackled in closed form is one foBmongN sites. This state can be shown to be the ground state
which one particle is in each ofl states(in {q} space (as- Of H' by proving that(i) this state is an eigenstate ef}
suming thatp<1). Noting that them particles to be de- Wwith eigenvalue &N and (ii) the numerically largest eigen-
stroyed by thec operators can be chosen i}f)(ways, and ~ value of—H" is 2dN. To prove(i), we observe that ifk) is
that them particles chosen may be distributedrirt ways @ configuration with no vacant site, thafia, , »|k) will con-
amongq; ,ds, - . . Om as well asq;,qy, . .. q.,, we get sist of 2dN distinct configurations and as all these configu-
rations are included if0), the stateaa, ., ,|0) will contain
" |k) with amplitude 2IN. This amplitude would be @N
(m) —2d if there had been one vacant site|k}, since now 2|
jumps from the nearest neighbor sites of the vacant site
would be absent. Hence, in general, the amplitudékpfin
—H '|0) will be 2dN, and this completes the proof 6j. To
Mo )J m prove (ii), let us examine the matrix representation-of’
2 )(];n)j!_ in the space of all configuratiorjk). Each row(or column
= will have 1 in 2dN places and O elsewhere, sine is
connected to @N configurations by the Hamiltoniagwhen
This sum cannot be evaluated easily. Instead, one can deritbere is no vacant sitelt folllows that the sum of the ele-
from this equation the equality ments of every rowor columr) is 2dN which, in view of the

(m!)?

Nm

b=

and
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well-known matrix propertie$11], is equal to the spectral which, for largeM, N, and smallm, happens to take the

radius. This completes the proof 6f). exponential form(7).

To calculate now the mass distribution in the ground state, Before we conclude, let us compare the mass distributions
we note that the total number of configurations|®), i.e.,  for the ground states off and /' with the same for the
the number of ways in whiclv bosons can be distributed steady state of the classical rufe The ruleC is a special
amongN sites(allowing for empty sitesis case of the model of Majumdar, Krishnamurthy, and Barma

[5], with no diffusion and aggregation and only “chipping”
Q'\NA: MI:IFNl_ 1) present. The mean field equation for this model,
dP(m)
This expression is obtained by observing thaf is nothing gi _[P(O)—2]P(m)+P(m+1)
but the coefficient ofx™ in the expression (&x-+ x2
+-.-)N. As mentioned earlie?(m) is also the probability +[1-P(0)]P(m—1),

P.(m) of gettingm bosons at some particular siteHence,
P(m) is simply LQ,’L" times the number of configurations
that havem bosons at site. This number of configurations is
again just the number of ways in which the remainivg
—m particles can be distributed among the remainig
—1 sites. Therefore, the ground state mass distribution fo

has the same steady-state solution as(Ey.We have also

checked that the simulation results fowith 1000 particles

also agree with Eq(7) for reasonable values of density 1

to 10). Thus, the classical distribution resembles the ground
tate distribution of{ ' [Eq. (8)] but not the same of{ [Eq.

F6)], as mentioned above. It would be interesting to compare

H s, finally, other quantum models with analogous classical models.
P(m)=0M-mqM Note AddedMass distribution described by E¢?) has
been discussed recently in the context of classical models by
(M+N—m—2)!M! Majumdar, Krishnamurthy, and Barnja2].
=(N—1) (M+=N-D!(M—m)!”’ ® The author is grateful to AICTE for assistance.
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